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Our understanding of how the brain adapts and responds over time 
to a host of environmental challenges, both under normal condi-
tions and in a range of neurological and psychiatric disease states, is 
incomplete. Although candidate gene approaches have been useful, 
too little is still known to select the best candidate genes for future 
investigations. Unbiased approaches are therefore essential to reveal 
fundamentally new insights into these questions.

Genome-wide studies of expressed RNAs are powerful but not suf-
ficient. This is because many adaptations and maladaptations do not 
involve alterations in steady-state levels of RNAs. Instead, they involve 
‘molecular scars’—chromatin structural alterations at specific genes 
that alter their inducibility (for example, priming or desensitization) 
in response to subsequent challenges1,2. Studies of chromatin are thus 
required to identify genes affected by this latent form of regulation. 
Likewise, studies of chromatin endpoints are the primary means of 
exploring the detailed molecular mechanisms by which the steady-
state expression or inducibility of genes is affected. Before chromatin 
studies, all efforts to understand mechanisms focused on cell culture, 
even though what happens in cultured cells—even cultured neurons—
is not always an accurate reflection of what happens in the fully dif-
ferentiated adult brain. Analogous to studies in the developmental 
biology and cancer biology fields, where certain epigenomic modifi-
cations are seemingly permanent, studies of chromatin in brain have 
the potential to identify how environmental experiences or challenges 

lead to life-long changes in neuronal or glial function and in behavior, 
including disease susceptibility or resilience. Finally, an increasing 
number of CNS disorders are being shown to be caused by primary 
abnormalities in chromatin regulatory proteins. Increased knowl-
edge of brain adaptations and disease pathogenesis resulting from 
explorations of epigenomic mechanisms3–19 has led to the possibil-
ity that such information can be mined to generate better diagnostic 
tests and treatments for a large variety of disabling nervous system  
disorders (Table 1).

A host of genome-wide methods have become available over the 
past decade, leading to increasingly powerful tools for characterizing 
changes in RNA expression and chromatin modifications, as well as 
relating the two phenomena. The reader is referred to a companion 
review of these experimental approaches20. However, application of 
such methods to the brain, given its distinctive cellular heterogeneity 
and the need to focus on in vivo models, involves many specialized  
challenges with regards to data analysis. In this review, we provide an 
overview of such challenges and highlight ways of overcoming them 
to derive the extraordinary benefits promised by epigenomic studies 
of the nervous system.

RNA expression analysis
Genome-wide epigenomic studies typically begin with measures of 
RNA expression, since ultimately it is the regulation of such expres-
sion that serves as the functional readout of epigenomic modifica-
tions. Over the past decade, genome-wide RNA expression analysis 
in brain has served as a powerful tool for identifying transcriptional 
signatures associated with normal neurodevelopment, as well as patho-
logical disease states. Historically, such investigations have relied on 
microarray technology as the primary means of generating transcrip-
tome data in brain; however, since its development, RNA-seq21–23 
has proven to be a more powerful tool for assessing transcriptional 
outputs for a number of reasons. (i) Whereas microarray technology 
limits researchers to detecting and analyzing transcripts that corre-
spond to existing genomic sequence information, RNA-seq allows 
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Over the past decade, rapid advances in epigenomics research have extensively characterized critical roles for chromatin 
regulatory events during normal periods of eukaryotic cell development and plasticity, as well as part of aberrant processes 
implicated in human disease. Application of such approaches to studies of the CNS, however, is more recent. Here we provide 
a comprehensive overview of available tools for analyzing neuroepigenomics data, as well as a discussion of pending challenges 
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distinct disorders of the CNS.
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studies of both known and new transcripts, an approach that is ideal 
for discovery-based experiments. (ii) Since RNA-seq allows unam-
biguous mapping of obtained DNA sequences to unique regions of 
the genome, as opposed to cross-hybridization procedures inherent 
in microarray technologies, signal-to-noise ratios are substantially  
improved. (iii) RNA-seq has a finer granularity of expression meas-
urements, thereby allowing assessments of a large dynamic range 
of expression levels24–26. Given these considerations, we focus 

 exclusively here on RNA-seq, which provides the most complete 
and accurate assessment of all expressed RNAs in a given tissue20. 
Despite the potential power of this approach, the analysis of RNA-seq 
data is still far from routine and involves numerous bioinformatics  
challenges, which we review here.

RNA-seq: initial methods of data processing and annotation. 
The raw data produced by RNA-seq (Fig. 1) is—for each biological  

Table 1 Progress report of epigenomic data from brain

Year Species/brain region(s) examined

Modification(s)  
and DNA binding 

protein(s) examined Platform(s) Variable(s) Key finding(s) Ref.

2009 Mouse/embryonic forebrain and 
midbrain

p300 ChIP-seq Basal state Genome-wide map of p300 identifying 
tissue-specific enhancers

3

2010 Human/prefrontal cortex, neurons 
versus non-neuronal cells

H3K4me3 ChIP-seq Age Age-correlated reorganization of 
H3K4me3: cell type– and subject-
specific regulation

4

2010 Mouse/adult hippocampus H4K12ac ChIP-seq, microarray Fear conditioned 
learning

Dysregulated H4K12ac and gene 
expression in aging

5

2011 Mouse/adult hippocampal dentate 
granule cells

5mC and 5hmC MethylC-seq,  
BS-seq/microarray

Electroconvulsive 
stimulation

Genome-wide, single-base-resolution 
maps of 5mC and 5hmC

6

2011 Mouse/adult nucleus accumbens H3K9me3 ChIP-seq Chronic cocaine Reduced H3K9me3 at heterochromatic 
loci and induction of retrotransposable 
elements after chronic cocaine

7

2011 Mouse/early postnatal and adult 
hippocampus and cerebellum

Human/adult cerebellum

5hmC Chemical labeling and 
immunoprecipitation, 
ChIP-seq

Age, Mecp2 
overexpression and 
knockout

Genome-wide maps of 5hmC during 
development and aging, including 
mouse models of Rett syndrome

8

2011 Human/adult hippocampus H3K4me3 ChIP-seq, RNA-seq Cocaine and alcohol 
addiction

Transcriptional and chromatin changes 
after cocaine or alcohol exposure

9

2012 Rat/adult hippocampus H3K9me3 ChIP-seq Acute restraint stress Increased H3K9me3 at heterochromatic 
loci and repression of retrotransposable 
elements after acute stress

10

2012 Mouse/adult cerebellar Purkinje, 
granule and Bergmann glial cells

5mC, 5hmC and non-
CpG methylation

MeDIP-seq, TRAP-seq Cell type, Mecp2 
knockout

Cell type–specific relationships between 
5hmC, 5mC and gene expression, 
and evidence that MeCP2 is the main 
5hmC-binding protein in brain

11

2012 Human, chimpanzee and macaque/
adult prefrontal cortex, neurons 
versus non-neuronal cells

H3K4me3 ChIP-seq Species Insights into human-specific 
modifications of the neuronal 
epigenome, with evidence for 
coordinated regulation across  
distant sites

12

2012 Mouse/adult nucleus accumbens H3K9me2 ChIP-seq, RNA-seq Morphine Genome-wide map of H3K9me2 and 
identification of regulated target genes 
after chronic morphine

13

2013 Human and mouse/frontal cortex, 
neurons versus non-neuronal cells

5mC and 5hmC MethylC-seq, RNA-seq Cell type, age Genome-wide single-base resolution 
maps of 5mC throughout the 
lifespan, showing increased non-CpG 
methylation during development

14

2013 Mouse/adult hippocampus H4K5ac ChIP-seq, microarray Fear conditioned 
learning

Insights into mechanisms of gene 
priming and ‘bookmarking’ by histone 
acetylation during memory activation

15

2013 Human/adult H3K4me1, H3K4me3, 
H3K9me3, 
H3K27me3, 
H3K36me3, H3K9ac 
and H3K27ac

ChIP-seq, microarray Cell and tissue types Global chromatin state transitions 
accompanying cell specification during 
development, as well as age-related 
changes

16

2014 Mouse/adult nucleus accumbens H3K4me3, H3K4me1, 
H3K27me3, 
H3K9me2, H3K9me3, 
H3K36me3 and RNA 
Pol II

ChIP-seq, RNA-seq Chronic cocaine Identification of combinations of 
chromatin changes (signatures) that 
predict regulation of pre-mRNA 
splicing by chronic cocaine

17

2014 Mouse/adult hippocampal dentate 
granule cells 

Human/brain

5mC (CpG) and non-CpG 
methylation (CpH)

BS-seq, ChIP-seq, 
RNA-seq

Age, triple Dnmt1 
Dnmt3a Dnmt3b 
knockout

Genome-wide, single-base-resolution 
maps of the neuronal DNA methylome, 
identifying high levels of both CpG and 
CpH methylation

18

2014 Mouse/adult nucleus accumbens PARP-1 and H3K4me3 ChIP-seq, RNA-seq Chronic cocaine Genome-wide map of PARP1 and 
identification of regulated target genes 
after chronic cocaine

19

Selected list of genome-wide neuroepigenomic analyses carried out in brains of human or other mammals since 2009.

r e v i e w
np

g
©

 2
01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



1478	 VOLUME 17 | NUMBER 11 | NOVEMBER 2014 nature neuroscience

r e v i e w

Short sequence
reads

Additional quality assessment,
e.g., duplication rates, GC bias,

rRNA contamination

Visualization of reads across
genes—TSSs to TESs—

to assess 3′ bias 

0.5

1.0

1.5

2.0

R
ea

d 
co

un
t p

er
 m

ill
io

n 
m

ap
pe

d 
re

ad
s

–2,000 TSS 33% 66% TES 2,000
Genomic regions (5′ → 3′)

0
10
20
30
40
50
60
70
80
90

100
Sequence content
across all bases

%T
%C
%A
%G

1 2 3 4 5 6 7 8 9

15
–1

9

25
–2

9

35
–3

9

45
–4

9

55
–5

9

65
–6

9

75
–7

9

85
–8

9

95
–9

9

Position in read (bp)

Genomic mapping and splicing alignmentProcessed mRNA

0 20 40 60 80 100
GC content (%)

0

0.02

0.04

0.06

0.08

D
en

si
ty

 o
f r

ea
ds

Mean sequence quality

Quality score distribution
over all sequences

5 10 15

10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

20 25 30

Average quality per read

Transcriptome assembly,
isoform expression, splice

variants and differential analysis

Splicing events quanti�cation
and differential analysis

Transcript-level summary counts
(e.g., Bland-Altman plot)

Mean of HTSeq and
GRanges counts

0

10
,0

00

20
,0

00

30
,0

00

40
,0

00
–1.0

–0.5

0

0.5

1.0

D
iff

er
en

tia
l H

T
S

eq
 a

nd
G

R
an

ge
s 

co
un

ts

Read alignment 

fRNAdb

RFam

NONCODE

miRBase

miRDeep

Cutadapt FASTX

piRNABank

SILVA (rRNA)

snoRNA-
LBME-db

gtRNAdb
(tRNA)

RNA-seq data acquisition

Quality control of raw sequencing reads

FastQC
(initial assessments of read quality)

Read alignment
(maps reads to a reference genome)

Adapter removal
from sequence reads

TopHat STAR

RNA-SeQC ngs.plot

HTSeq Cufflinks MISO

miRanalyzer

Bowtie

Exon B Exon CExon A Exon B Exon CExon A

Genic transcripts, splice variants and long noncoding RNAs

Post-alignment quality control

Small noncoding RNAs

Quanti�cation and analyses

Figure 1 Initial pipelines of RNA-seq data analysis. Following data acquisition, RNA-seq analyses typically begin with quality control assessments using 
analytical tools such as FastQC. Next, for analysis of genic transcripts, splice variants and lncRNAs, short sequencing reads can be aligned to a reference 
genome using programs such as TopHat or STAR. After alignment, additional quality control assessments can be made with RNA-SeQC and ngs.plot 
(orange line, RNA-seq plot from a human postmortem brain sample with a high RNA integrity number (RIN = 7.8); green line, RNA-seq plot from a human 
postmortem brain sample with a low RIN value (RIN = 3) displaying a clear 3′ bias). ngs.plot image used with permission from ref. 28. Finally, to quantify 
and analyze RNA-seq data, programs such as HTSeq, Cufflinks or MISO are typically used. Depending on experimental purification schemes, researchers may 
also wish to analyze small ncRNAs from their samples. To do so, after initial quality control analysis, adapters must first be removed from sequence reads 
using Cutadapt or FASTX, followed by Bowtie alignment to a reference genome and quantitation using a program such as miRanalyzer139. Additional ncRNA-
specific analyses can similarly be integrated into miRanalyzer’s pipeline, or independent databases (for example, SILVA, piRNABank, etc.) can be used.
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sample—tens to hundreds of millions of short sequences (called 
reads, typically 50–100 bp) that correspond to random fragments of 
expressed RNAs present in the original tissue. The first step in analyz-
ing such data is to assess the quality of these reads, which greatly influ-
ences downstream bioinformatics outputs. For that purpose, FastQC 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) can be 
used. FastQC is a lightweight, highly efficient and low profile program 
(that is, it requires relatively little memory and yields outputs that are 
not excessive) that simply requires raw sequencing reads in FASTQ 
format for initial quality control assessments. FastQC, however, 
does not address RNA-seq-specific questions, such as exonic versus 
intronic alignments and transcript detection rates, making quality 
control determinations for subsequent downstream analyses difficult. 
To address these, RNA-SeQC27 is often used after FastQC, allowing 
investigators to examine numerous additional parameters associated 
with RNA-seq sample quality, including yield, alignment and duplica-
tion rates, GC bias, contaminating ribosomal RNA content, regions 
of alignment (exon versus intron versus intragenic), continuity of 
coverage, 3′/5′ biases and counts of detectable transcripts, among oth-
ers. Although RNA-SeQC is a comprehensive program that addresses 
most quality control issues, its usage can be cumbersome, requiring a 
great deal of computational power. In addition, ngs.plot28 can be used 
in connection with RNA-SeQC or FastQC to generate gene body plots 
for RNA-seq data, thereby providing an intuitive visualization tool for 
investigators to examine overall coverage patterns of sequencing reads 
from transcription start sites (TSSs) to transcription end sites (TESs). 
This tool allows the identification of common sequencing abnormali-
ties, such as strong 3′ biases. Although underreported, such qual-
ity control data are extremely important to interpretations of RNA 
expression in brain, as differences observed in transcript abundance 
between control and experimental conditions, although important, 
are often small in magnitude, owing to a variety of challenges specific 
to working with neural tissues (Box 1). Since low-quality sequencing 
results in decreased signal-to-noise ratio, as well as potential biases, 
such small differences may be inadvertently masked or amplified, 
thereby leading to high false positive and negative rates.

After initial quality control assessments, short sequence reads are 
mapped to appropriate transcriptomes using splicing-aware align-
ment tools. Such mapping requires both a reference genome sequence 
and a description of transcripts (for example, a format such as GFF), 
rendering alignment results highly specific to a particular version of 
the transcriptome, which one can refer to using a database name and 
release number (for example, Ensembl 67). When working with a spe-
cies for which a comprehensive reference genome is not available, 
de novo transcriptome assembly can be performed using tools such as 
Cufflinks29 and Trinity30. A popular choice for RNA-seq data align-
ment is TopHat31, which wraps around Bowtie32 as the basic alignment 
tool but provides additional workflows to accomplish tasks specific 
to RNA-seq data analysis (for example, splicing detection). Since 
spliced alignment is critical to RNA-seq analysis, it has attracted much 
research effort in recent years. For example, a new alignment program, 
STAR33, has been gaining market share and attention. In a recent study 
comparing 11 programs for RNA-seq alignment34, STAR achieved 
impressive performance across numerous benchmarks, including 
alignment yield, basewise accuracy, mismatch and gap placement, 
exon junction discovery and suitability for transcript reconstruction. 
STAR is an ultrafast, sensitive and precise tool that reduces alignment 
time from 1–2 d to a few hours for RNA-seq samples containing ~100 
million reads, based on four-core workstation processing capabilities. 
STAR is limited, however, in that its memory footprint can easily reach 
32 GB or more, which is prohibitive for many common servers.

Analysis of transcripts, splice variants and noncoding RNAs. The 
next step in data analysis is to infer expression levels of individual 
transcripts from aligned reads. Simply put, if tissue samples derived 
from control conditions generate on average 1,000 reads for a given 
RNA and samples from an experimental condition generate 2,000 
reads, one can conclude a twofold induction of that gene’s expression. 
Such analyses are rarely so simple, however, because of the expression 
of multiple transcripts from a single gene and because such transcripts 
share a majority of their sequences, often differing by only a few or 
dozens of base pairs. Cufflinks29 solves this problem through the use 
of a statistical learning approach that assigns a fraction of the total 
read count to each transcript on the basis of a maximum likelihood 
principle. In addition, Cufflinks attempts to quantify splicing events 
by grouping transcripts into TSS groups. A TSS group is a collec-
tion of transcripts that share TSSs. Such grouping is based on the 
rationale that alternative splicing events, such as exon skipping, will 
only happen between transcripts sharing the same TSS. Two types 
of splicing events are thereby characterized: (i) alternative splicing, 
which is defined between different transcripts that are in the same TSS 
group; and (ii) alternative promoter usage, which is defined between 
transcripts with different TSSs. It should be noted that Cufflinks only 
reports these events at the level of TSS groups, as well as entire tran-
scripts, and does not provide detailed information regarding which 

Box 1 Challenges specific to neuroepigenomics 

Epigenomic studies of the brain are more challenging as a result of 
several considerations. In contrast to studies of cultured cells or most 
peripheral tissues, a discrete brain region of interest must be isolated 
by microdissection, which adds considerable variability to any study 
of the brain. Moreover, because many brain regions of interest are very 
small (~1 mm3 in a mouse), tissue is highly limiting. This necessitates 
multiple analyses to be performed on different collections of tissue from 
different cohorts of animals, which further increases the imprecision 
inherent in brain investigations.

Brain tissue is also highly heterogeneous, with all brain regions  
containing many types of neuronal, glial and vascular cells. The fact 
that each cell type has a distinct epigenome further increases the 
‘noise’ of brain epigenomic data compared to that from simpler  
systems. In addition, certain diseases might involve shifts in cell type 
(for example, loss of neurons in neurodegenerative disorders or invasion 
of immune cells in neuroinflammatory disorders), which complicates the 
interpretation of epigenomic data. Epigenomic analysis of individual cell 
types—the isolation of which or their nuclei is becoming increasingly 
possible by use of genetic or viral tags140—represents one promising 
approach for the future. However, it is not yet feasible to obtain from 
smaller brain regions the numbers of isolated cells or nuclei that are 
required for most epigenomic analyses. Refinement of techniques that 
make ChIP-seq and related procedures possible with a far smaller  
numbers of cells or nuclei will advance the field dramatically4,141,142.

It has long been known that regulation of neural phenomena often 
involves changes in protein levels or activities that are far smaller than 
those seen in studies of other systems. As just one example, earlier 
microarray studies of cultured cells, peripheral tissues or tumors might 
have a twofold cutoff, whereas studies of brain reveal few changes 
of this magnitude. This is not solely due to the confounding effect of 
multiple cell types, because similar findings have been obtained from 
analysis of single cell types. Rather, it is likely that fully differentiated 
neurons in the context of an intricate circuit do not show the same 
degree of adaptation displayed by other cell types. This requirement 
to reliably detect changes of relatively small magnitude (for example, 
20%)—which are demonstrably functionally important1,2,15—adds  
another special burden on bioinformatics analysis of neuroepigenomic data.
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exons demonstrate alternative splicing. To obtain more detailed splic-
ing information, the Mixture of Isoforms (MISO) model35 can be 
used. MISO is based on a different design from that of Cufflinks and 
works on a predefined set of splicing events, such as exon skipping, 
intron retention, mutual exclusion and alternative 3′ UTR. MISO uses 
the Bayesian theorem to iteratively infer splicing ratios, both among 
isoforms of the same gene and between two conditions for the same 
isoform, thereby allowing researchers to derive relative abundances 
of spliced transcripts. Such detailed information offers an advantage 
when performing integrative analyses between alternative splicing 
and other forms of epigenomic regulation, such as the contribu-
tions of histone modification states and transcription factor binding 
events to regulation of alternative splicing. Additional information 
on alternative transcripts can be obtained from sequencing nuclear 
RNA as opposed to total cellular RNA. Nuclear RNA contains much 
larger amounts of sequenced introns, which can provide invaluable 
information about splicing mechanisms36. RNA-seq analysis of brain 
tissue has revealed an order of magnitude more alternative transcript 
production compared to that inferred from older microarray and  
related technologies17.

RNA-seq also enables the detection and quantification of several types 
of noncoding RNAs, which are proving crucial in biological regulation. 
A subset of long noncoding RNAs (lncRNAs)—as in protein-coding 
genes—contain polyadenylated (poly(A)) tails, which allow their detec-
tion by RNA-seq regardless of the RNA purification procedure used (for 
example, ribozero—an extraction protocol for isolating total RNA with 
removal of cytoplasmic rRNA—or poly(A) selection). Identification 
of non-poly(A) lncRNAs, however, can only be accomplished through 
purification procedures preserving total (that is, poly(A)+ and poly(A)–) 
RNA. Since lncRNAs exist in high abundance in mammals, the Ensembl 
database has been incorporating many lncRNAs into its gene collection. 
Thus, predefined lncRNAs can now be analyzed alongside protein-coding  
genes in the same sample. If investigators wish to predict a large number 
of novel, and still unannotated, lncRNAs, however, this can be accom-
plished by using histone modification state data to define candidate 
regions. To do so, ChIP (chromatin immunoprecipitation)-seq data 
for euchromatic H3K4me3 (trimethylated Lys4 of histone H3) and 
H3K36me3 need to first be obtained, as described in the next section. 
Using the intersection of H3K4me3 and H3K36me3 (so called ‘K4-K36 
domains,’ as defined through ‘peak calling’; see below), RNA-seq reads 
at these domains can be extracted using programs such as BEDTools37 
to estimate lncRNA abundance.

MicroRNA sequencing experiments, which must be run separately 
from standard RNA-seq experiments, investigate mature miRNAs 
that are around 22 nucleotides in length. Since most high-throughput 
sequencing machines produce reads that are significantly longer than 
mature miRNAs, the short reads obtained from miRNA sequencing 
often contain portions of adapter sequences. The first step of miRNA 
analysis is thus to remove adapter sequences using tools such as 
FASTX (http://hannonlab.cshl.edu/fastx_toolkit/). As an alternative, 
the Cutadapt program38 can be used for these purposes. Cutadapt 
is useful in that, in comparison to FASTX, it supports a larger range 
of sequencing platforms, including color-space reads, which allow 
base pairs to be encoded in color to reduce sequencing error rates 
(https://www.biostars.org/p/43855/). Following adapter removal, 
short reads can be mapped to the reference genome similarly to 
data obtained from long RNA sequencing. miRBase39 provides a 
comprehensive collection of miRNA sequences. BEDTools can then 
be used to extract read counts for each of the annotated miRNAs 
obtained from alignment. If de novo prediction of miRNAs from 
a given sample is desired, the miRDeep40 program can be used. 

Many more families of small RNAs (Table 2) can be identified and 
analyzed with similar approaches39,41–48.

Differential analysis: approaches, advantages and disadvantages. 
Differential analysis refers to the process of identifying differences 
in RNA expression levels of individual genes, or of individual splice 
variants of a single gene, between control and experimental samples. 
This is not straightforward, as there are numerous tools available, each 
of which is associated with high rates of false positive or false negative 
discovery and generates very different lists of regulated genes when 
applied to the same sequencing data. Generation of ideal differential 
analytical tools is therefore a focus of great interest in the field.

The first step in this process often involves summarizing gene- 
or gene variant-level read counts using a popular Python program 
called HTSeq (http://www-huber.embl.de/users/anders/HTSeq/). 
According to individual needs, BEDTools can also be used for gene 
count summarization. All read counts across genes and samples are 
then imported into a data matrix so that each row represents a gene 
and each column represents a sample. This data matrix serves as the 
input for downstream differential analyses. Many differential analysis 
tools have been developed in recent years. Two popular choices are 
DESeq49 and edgeR50, with both methods based on negative binomial 
testing, which provides an exact test (generalization of the Poisson 
distribution model) that is ideal for modeling biological variances of 
read count data. Variance estimates are often problematic for RNA-
seq data sets, as sample sizes from animal models are typically small, 
with an N = 3 (three biological replicates) used per condition in most 
experiments. Therefore, many statistical methods are used to exploit 
the relationship between mean- and variance-related information 
obtained from neighboring genes to stabilize variance estimations. 
DESeq uses local regression to model mean-variance relationships, 
while edgeR uses Bayesian methods to ‘borrow’ information from 
neighboring genes. Both methods generate satisfactory results, and 
their lists are often consistent. Recently, a new method called voom51 
has been developed. It does not depend on negative binomial testing 

Table 2 Existing databases for analysis of ncRNAs
ncRNAs Database Description Ref.

General 
purpose

Rfam (http://rfam.xfam.org/) Sister database of 
Pfama, collections of 
ncRNA families

46

NONCODE (http://www.noncode.org/) Database of ncRNA, 
excluding rRNA and 
tRNA

48

fRNAdb (http://www.ncrna.org/frnadb/) Database of functional 
ncRNAs

44

miRNA miRBase (http://www.mirbase.org/) Database for miRNAs 39
piRNA piRNABank (http://pirnabank.ibab.ac.in/) Database for piRNAs; 

clustering information 
provided

42

snoRNA snoRNABase (https://www-snorna. 
biotoul.fr/) 

Comprehensive database 
for human snoRNAs

41

lncRNA lncRNAdb (http://www.lncrnadb.org/) Database for lncRNAs 45
rRNA SILVA (http://www.arb-silva.de/) Curated database for 

rRNAs
47

tRNA GtRNAdb (http://gtrnadb.ucsc.edu/) Genome-wide tRNA 
database predicted 
by the program 
tRNAscan-SE

43

This list is not comprehensive but aims to provide an overview of available databases 
for analyzing ncRNAs from biological samples. Recently identified types of ncRNA, 
such as circular RNAs, which may have critical functions in the CNS, are not included, 
as analysis tools do not yet exist. piRNA, piwi-interacting RNA.
aPFam: a database widely used in the analysis and annotation of protein sequences that uses 
hidden Markov model–based multiple sequence alignments to provide detailed information 
about protein families and domains.
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and instead models mean-variance relationships on log-transformed 
read counts, thereby assigning a precise ‘weight’ for each gene. These 
weights are then entered into the limma52 empirical Bayes analysis 
pipeline. This approach provides access to a large collection of analy-
sis tools developed originally for microarrays, which makes voom a 
particularly attractive option. Furthermore, DESeq has been criticized 
for its extremely conservative outputs, and its authors have acknowl-
edged that their method yields high false negative rates53. Recently, 
the statistical power of the program has been improved with the intro-
duction of DESeq2 (http://www.bioconductor.org/packages/release/
bioc/html/DESeq2.html). Nevertheless, experience with RNA-seq 
suggests that larger numbers of biological replicates are needed to 
derive the most reliable data54,55.

Cuffdiff, another popular tool for RNA-seq differential analysis and 
part of the Cufflinks pipeline, is a natural choice for investigators using 
Cufflinks for initial identification of transcripts and splice variants. 
However, we, along with many other groups, have found Cuffdiff to 
generate a high degree of false positives. The authors of Cufflinks claim 
to have improved the reliability of detection in Cuffdiff 2 (ref. 56),  
but a recent comparison pointed out that Cuffdiff 2 may be too  
conservative57. Another reason for avoiding Cuffdiff is its restrictive 
workflow. Cuffdiff only accepts short read alignments and performs 
read counts, GC content adjustments, 3′ bias corrections and differ-
ential analyses in one integrated workflow; with a standard four-core 
workstation, it would take 1–2 d to complete analysis for a 20-sample 
(10 versus 10) data set and may crash for data sets with >80 samples. 
Using HTSeq for gene counts in connection with limma or DESeq 
greatly reduces the analysis time, to <1 h.

Performing all of the steps of RNA-seq analysis, including quality 
assessment, alignment, gene count summarization and differential 
analysis, can be tedious if investigators have hundreds or thousands 
of samples (for example, from studies of clinical populations), as 
well as dozens of comparisons, to run and examine. Therefore, a new 
Python-based computational pipeline, SPEctRA (Scalable Pipeline 
for RNA-seq Analysis: https://github.com/shenlab-sinai/SPEctRA/), 
has been developed to perform all these tasks with a single command, 
accepting various parameter settings as a configuration file. This pipe-
line is designed to function in different computational environments. 
For example, when performing analyses under a portable batch sys-
tem cluster (computer software that allocates computational tasks), 
SPEctRA will generate batch scripts, automatically submit them and 
wait for them to finish. A new feature of this pipeline that will allow 
it to run in the Amazon cloud, where both CPU power and memory 
can be configured on demand for each run, is being developed.

Epigenomic analyses of the nervous system
ChIP-seq: initial methods of data processing and annotation. As 
with RNA-seq, the raw data obtained from ChIP-seq are tens to hun-
dreds of million short reads per sample that correspond to genomic 
regions bound to the DNA-binding protein subjected to ChIP (for 
example, a modified histone or transcription factor)20. Quality control 
and sequence alignment are the first steps in analyzing such ChIP-seq 
data. Any of several short read aligners, such as Bowtie32 or BWA58, 
can be used to align reads to a reference genome and assess the enrich-
ment of the DNA-binding protein of interest. Sequencing quality can 
then be assessed using FastQC, as described above. Alignments are 
next exported as BAM59 files for further analysis. If ChIP-seq sam-
ples are generated from sonication-based fragmentation methods, 
then duplicated alignments need to be removed, a procedure easily 
accomplished with SAMtools59 or Picard (http://picard.sourceforge.
net/). In doing so, PCR duplicates are identified as reads aligned to 

the same genomic location or on the same strand of fragmented DNA. 
During sonication, genomic DNA is theoretically fragmented at ran-
dom, thereby rendering it unlikely that two unique reads will align to 
the same location or on the same strand of DNA. Since micrococcal 
nuclease (MNase) digestion, as used in so-called native ChIP, pref-
erentially digests genomic sequences containing specific nucleotide 
sequences (that is, the rate of MNase cleavage 5′ of A or T nucleotides 
is 30 times greater than the rate of cleavage 5′ of G or C nucleotides), 
the probability of obtaining fragments from the same location or 
strand is increased. Therefore, removal of these reads when analyz-
ing native ChIP samples, unless excessively high (thresholds can be 
determined using DANPOS60, as described below), is not typically 
performed. Removal of repeat reads can be problematic when ana-
lyzing repeat regions of the genome, which are now known to be 
important in biological regulation, thus framing a challenge for bio-
informatics innovations. The number of unique reads per sample is an 
important criterion for the quality of ChIP-seq data. Since antibodies 
are key to success in any ChIP-seq experiment20, it is vitally important 
to determine the efficiency and specificity of the antibody being used. 
For this purpose, the phantomPeak61 tool can be used, as suggested 
by the Encyclopedia of DNA Elements (ENCODE) Consortium62, to 
examine the distribution of cross-correlations between represented 
strands of DNA to determine peak enrichments (see next section).

It is also helpful to visualize ChIP-seq enrichment profiles to ensure 
quality and diagnose any problems that may exist. Two approaches, 
localized inspection and global visualization, are used. For local 
inspection, the IGV genome browser63, which runs on all platforms 
without uploading data, is popular. With the tools provided by the 
IGV, BAM file are first converted to TDF files and then loaded onto 
the browser to display coverage between two chromosomal coordi-
nates. For global visualization, ngs.plot (https://code.google.com/p/
ngsplot/)28 allows inspection of both average and ‘laid out’ coverages 
as curves or heat maps, respectively, at various functional genomic 
regions, such as TSS, TES, gene body, CpG islands, enhancers, exons 
and DNase I hypersensitive sites (DHSs). ngs.plot, which is simple 
to use and supports many genomes, can accommodate large align-
ment files with relatively small memory footprints. A ChIP-seq quality 
assessment pipeline has been developed (https://github.com/ny-shao/
chip-seq_preprocess/) to perform all the above steps with a single 
command. This pipeline uses a similar design to that of the RNA-seq 
pipeline described above. When dealing with large sample numbers 
and multiple comparisons, this pipeline saves substantial amounts 
of time and effort.

Another important quality control consideration during the initial 
analysis and alignment of ChIP-seq data requires an in-depth under-
standing of the differences between “uniquely mapped” and “unique 
reads/tags,” two terms that are often used interchangeably in the field 
but are distinctly defined. “Uniquely mapped” reads are identified by 
all alignment software programs and exclude sequences that align to 
multiple genomic locations. These excluded sequences likely repre-
sent repetitive regions of the genome, or nonrepetitive genomic loci 
that are extremely similar in sequence (although the latter becomes 
increasingly unlikely with greater read lengths). “Unique reads/tags,” 
however, refer to reads remaining after PCR de-duplication (that is, 
the nonredundant fraction) using tools such as SAMtools. PCR de-
duplication essentially excludes reads (all copies but one) that align 
to the same genomic location. These non-unique reads are often PCR 
duplicates resulting from overamplification during library process-
ing, most likely as a result of low starting material or poor antibody 
efficiency. These reads are thus often removed to avoid PCR amplifi-
cation bias. However, arguments now exist64,65 to suggest that these 
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 duplicative reads may provide increased dynamic range to ChIP 
signals. For example, let us imagine that we are examining a small 
genome of 1,000 bp, where the read length obtained is 100 bp. If our 
goal is to evaluate the overall enrichment of a DNA-binding protein 
in this genome, then the total number of unique binding locations 
is (1,000 − 100 + 1) × 2 = 901 × 2 = 1,802, considering both strands. 
If we were to have a library size of one million reads with no PCR 
duplicates, then the number of unique locations would be saturated, 
thereby preventing the investigator from distinguishing differential 
binding strengths to these regions. If only one alignment at each 
unique location were to be preserved, then the dynamic range would 
be 0 to 1,802, with all remaining reads being thrown out. However, 
if two PCR duplicates were to be kept, then the dynamic range of 
enrichment would double (that is, it would be 0 to 3,604), and so 
on. Therefore, although removing duplicates is a highly conserva-
tive measure to prevent PCR amplification bias, it is also likely that 
this process similarly removes real signals that might be informative 
for determination of binding interactions. Having said this, without 
excluding these duplicates, one runs the risk of generating high levels 
of false positive findings due to increased signal. In our experience, 
keeping two reads for any identified duplicates (instead of only one) 
dramatically increases the sensitivity of downstream data analysis and 
genome browser viewing with IGV, while retaining low false positive 
discovery rates.

Peak calling—identifying a genomic region that displays a sig-
nificant level of a DNA-binding protein above background—is an 
important task in analyzing ChIP-seq data. Dozens of peak calling 
tools exist, and these methods can generally be separated into two 
categories: sonication- and MNase based. For sonication-based peaks, 
Model-based Analysis of ChIP-Seq (MACS)66 and Hypergeometric 
Optimization of Motif Enrichment (HOMER)67 are used. In our 
experience, both methods work very well for punctuated peaks (for 
example, H3K4me3). However, if peaks are broad and diffuse (for 
example, total histone H3 or H3K9me2), detection can be challenging, 
and HOMER is generally recommended, as systematic evaluations of 
broad peak detection are often difficult. For MNase-digested peaks, 
DANPOS60, which detects not only basal enrichment but also vari-
ous nucleosomal events (for example, nucleosomal positioning and 
occupancy and ‘fuzziness’ between the two), can be used. After peaks 
are detected, it is useful to determine their type of location within the 
genome, such as genes, gene deserts or pericentromeres. A regional 
analysis tool, which is part of the diffReps68 package—more recently 
extended as a standalone program (https://github.com/shenlab- 
sinai/region_analysis/)—has been developed to perform this task. 
This program features single-command use and can assign genomic 
regions to one of eight distinct categories: proximal promoter (within 
250 bp of a TSS), promoter 250 bp to 1 kb upstream of a TSS, promoter 
1 to 3 kb upstream of a TSS, gene body, gene desert, pericentromere, 
subtelomere and other intergenic loci. Regional annotation is a very 
useful feature, and other alternatives exist to perform this function, 
including the ChIPpeakAnno69 package. After peaks are annotated, 
enrichment of specific chromatin marks is easily visualized for their 
genomic distribution using pie charts or plots.

Differential analysis: approaches, advantages and disadvantages. 
Differential analysis of ChIP-seq data aims to identify genomic loci 
or broader regions that display significant changes in enrichment 
between control and experimental conditions. Although it is natural 
for investigators to consider differential analyses as an extension of 
peak calling, in reality the former cannot be measured accurately 
using standard peak calling methods. One differential analysis tool70 

based on peak calling exists; however, the numerous challenges 
associated with this approach make it disadvantageous. Differences 
in antibody efficiency, sequencing biases and manual handling of 
samples (sequencing library preparation), can produce very different 
signal-to-noise ratios between samples, which confounds peak call-
ing. Insufficient sequencing depth (that is, too few reads per sample) 
can also result in specific genomic regions having different coverage 
across different samples and complicate differential analyses. For 
example, consider the following situation: a 3-kb peak in biologi-
cal replicate 1 under condition A; two 1-kb peaks with a 1 kb gap in 
biological replicate 2 under condition A; a 2.5-kb peak shifted to the 
left with lower enrichment in biological replicate 1 under condition 
B; and a 2-kb peak shifted to the right with higher enrichment in 
biological replicate 2 under condition B. Such heterogeneity in peak 
calling, which is common in analyses of brain (see Box 1), makes 
comparisons difficult.

Further exaggerating this problem is the fact that different peak 
calling methods, or the same peak calling method with different 
parameter settings, can yield very different peaks using the same 
ChIP-seq data set. Biological replicates are thus essential in neuroepi-
genomics research to enhance statistical power and increase precision. 
However, most peak calling methods have not been designed with 
biological replicates in mind. To address these challenges, one can 
use a sliding window–based strategy to ensure that the entire genome 
is scanned and scored continuously, and that significant regions can 
be extracted for further analyses. diffReps68, which was developed 
to address this need, is a Perl-based program that features single- 
command use and has been applied to several projects. diffReps scans  
genomes with a predefined window size and performs one of four 
distinct statistical tests, identifies samples passing predefined cutoffs, 
merges replicates, performs multiple-testing corrections and reports 
results. Using benchmark standards, diffReps is highly sensitive and 
efficiently controls for false positives (Fig. 2). It is also important to 
assess the reproducibility among biological replicates as an additional 
quality control measurement during data processing. To do so, one 
may use programs such as corrgram71, which generates Pearson’s cor-
relation coefficients between ChIP-seq signals derived from multi-
ple signals. Alternatively, irreproducible discovery rates (IDRs) can 
be derived after peak calling to determine the number of enriched 
regions observed between replicates, as described72.

Important questions for ChIP-seq experiments are the read depth 
required to appropriately make assumptions on the basis of the afore-
mentioned analyses and to determine whether experimental sequenc-
ing depths are sufficient for the questions being asked. In general, 
researchers may follow the guidelines established by the ENCODE 
Consortium72, which indicate a minimum of 10 or 20 million 
uniquely mapped reads for factors displaying punctuated or broad 
peaks, respectively. One may also perform saturation analyses for 
each individual factor to assess the sufficiency of sequencing depth. 
In essence, such analyses repeatedly perform peak calling on a series 
of samples from the original ChIP-seq library using increasing sam-
pling rates, followed by plotting the number of peaks assigned versus 
the sampling rate to identify plateaus indicative of sequencing depth 
saturation. One caveat for such analyses, however, is that narrow-peak 
binding factors, such as transcription factors, will typically display 
increased numbers of binding sites (peaks) with increasing numbers 
of reads obtained. This is because such factors rarely saturate at the 
number of reads that are practical for saturation analysis.

Another challenge in analyzing ChIP-seq data involves appropri-
ately annotating chromatin states while examining combinations of 
chromatin modification patterns in a given sample. To achieve this, 
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an automated computational system, referred to as ChromHMM73, 
has been developed to integrate ChIP-seq information from multiple 
histone modifications, chromatin factors, transcription factors, etc., to 
accurately assess combinatorial and spatial patterns of marks or bind-
ing factors in biological samples. Such analyses provide a new type of  

computational tool for ‘learning’ chromatin states, characterizing biological  
functions and achieving genome-wide visualizations of such annota-
tions. Although many methods now exist for analyzing ChIP-seq data,  
independent biological validation remains an essential step for confirm-
ing the accuracy of any data derived from genome-wide approaches.
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Figure 2 ChIP-seq analysis of brain. (a) Assessment of ChIP-seq sample quality, represented here as the sequence quality score versus base pair position 
using FastQC, is a critical first step in ChIP-seq data analysis and is required for appropriate interpretations of subsequent downstream analyses. The 
example shows relatively poor quality data, given the high error rate and variability toward the 3′ end of the reads. (b) Example pie charts describing the 
genome-wide distribution patterns of differential histone modification sites for H3K4me3, H3K4me1 and H3K27me3 (as determined using diffReps) in 
nucleus accumbens (NAc) of saline- versus chronic cocaine–treated mice16. 1K, 0.25–1 kb upstream of a TSS; 3K, 1–3 kb upstream of a TSS. Reprinted 
with permission from ref. 17. (c) Example gene body plots for H3K36me3 in NAc of control mice derived by ngs.plot. Lines represent average profiles for 
four gene groups ordered by mRNA expression levels by RNA-seq, defined as “high,” “med2,” “med1” and “low,” and illustrates increasing levels of this 
histone mark with increasing gene expression. ngs.plot easily generates these kinds of figures for accessible representations of protein enrichment throughout 
different functional genomic regions. (d) Representative log2 enrichment heat maps generated in ngs.plot for several histone marks versus DNA input in 
mouse NAc at TSS ± 5 kb genomic regions. Gene expression levels analyzed by RNA-seq are illustrated by enrichment in the same gene order as  
ChIP-seq enrichment patterns. Red is high, green is low. (e) Integrated genomics viewer (IGV) screenshots for ChIP-seq data of various histone marks in NAc 
of cocaine-treated mice, as well as RNA-seq data from poly(A)-selected RNA. The genomic region displayed represents the TSS and ~20 kb downstream 
of the Egr1 gene. (f) Chromatin signatures, such as those shown here, can be defined to characterize groups of transcripts displaying similar patterns of 
chromatin modifications at specific genomic regions following environmental stimuli (for example, at splicing-related regions following cocaine treatment)16. 
Motif finding can then be used to identify potential transcriptional and splicing-associated factors deduced to regulate these signatures. (g) IGV genome 
browser screenshot for ChIP-seq coverage of H3K4me3 from NAc of control mice. Three biological replicates are shown as separate tracks, with significant 
peaks identified by MACS depicted as solid bars beneath the tracks. The genomic region depicted is ~chr11:116,974,000–116,990,000. These data 
highlight the difficulty of using peak calling–based approaches to identify differential enrichment patterns across samples. Although the three biological 
replicates appear to be generally similar in size and distribution, MACS identified discordant peaks among the samples owing to intrinsic variations in peak 
location. Unlike MACS, diffReps uses a sliding window approach that allows one to focus on a region of a fixed size across all samples (for example, 1 kb), 
thus allowing more unified comparisons across samples. (h) ChIP-seq differential analysis using diffReps to compare two groups of samples representing two 
distinct biological conditions and test for significance. Here, diffReps was used to compare differential H3K4me3 enrichment in NAc between saline- versus 
cocaine-treated mice at the TSS of the Enah gene.
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Overlaying ChIP-seq and RNA-seq data. In an effort to understand 
the transcriptional and epigenomic mechanisms underlying RNA 
expression, a major goal of current research is to merge ChIP-seq 
and RNA-seq data sets. In fact, if one analyzes enough epigenomic 
endpoints (the many histone modifications, chromatin remodeling 
factors, transcription factors and other chromatin regulatory pro-
teins), it should in theory be possible to identify chromatin signatures 
that reflect specific modes of transcriptional regulation, such as gene 
activation or repression as well as gene priming or desensitization.

Accomplishing this task remains challenging given the vast amounts 
of data (terabytes) involved. One initial approach is to first reduce 
observed ChIP-seq events to individual genes. This thereby reduces 
the problem to essentially comparing two gene lists: one from dif-
ferential analysis of ChIP-seq data and the other from differential 
analysis of RNA-seq data. GeneOverlap (http://www.bioconductor.
org/packages/devel/bioc/html/GeneOverlap.html), a Bioconductor 
package for testing and visualizing gene overlaps, can be used for this 
purpose. However, such analyses oversimplify the problem. First, a 
given histone modification can show opposite changes across the span 
of a given gene. Also, all histone modifications regulate gene expres-
sion in a highly cooperative but complex fashion. For example, the 
histone modification H3K4me3 is highly enriched at active gene pro-
moters and is often used as an indication of transcriptional initiation. 
However, H3K4me3 levels at some genes can increase, in concert with 
other DNA-binding proteins (for example, RNA polymerase II (Pol 2)  
Ser5 phosphorylation), in response to a specific stimulus without 
increasing the expression of its cognate gene, a phenomenon thought 
to indicate gene ‘poising’. And in much fewer examples, H3K4me3 has 
been linked to gene repression when it associates with ING2 (inhibitor 
of growth family-2), a chromatin regulatory protein74. Conversely, 
the histone mark H3K9me3, which typically enriches within the gene 
bodies of silenced genes along with corepressor proteins, may exhibit 
increased enrichment with distinct binding partners to promote alter-
native splicing75.

Many groups76,77 have attempted to use histone modifications to 
predict gene expression at baseline states in cultured cells and have 
achieved good performance. These groups were able to generate pre-
dicted expression levels correlating with real expression levels with 
coefficients as high as 0.8. Their approach worked by separating gene 
bodies into dozens of bins in which the relative enrichment of his-
tone marks was determined. In this case, enrichment values served 
as observed data and corresponding gene expression levels served as 
target variables. Such training data were then fed into machine-based 
learning methods, such as support vector machines or generalized 
linear models, to learn how the behavior of histone modifications 
relates to gene expression. This approach, however, has not yet been 
applied to brain tissue at rest and, in particular, to data examining 
the relationship between stimulus-induced changes in epigenomic 
endpoints and gene expression, perhaps the most essential question 
facing molecular neuroscientists interested in examining the role of 
epigenomic mechanisms in mediating the impact of environmental 
manipulations on the brain.

We recently developed a bioinformatics approach that was success-
fully applied to studying the actions of repeated cocaine exposure in 
the mouse nucleus accumbens17, a key brain reward region important 
in addiction. We first correlated ChIP-seq data for six histone modi-
fications and for total Pol 2 binding with changes in gene expression 
as determined by RNA-seq. While we were able to demonstrate >50 
distinct chromatin signatures that correlate with altered RNA expres-
sion, the correlations were relatively weak and not deterministic. This 
suggests that a far larger number of chromatin endpoints are needed 

to make such predictions; indeed, new research is revealing many pre-
viously unappreciated histone modifications (see below). Additional 
considerations unique to the analysis of brain tissue are also likely 
involved (see Box 1).

We used a similar approach to determine whether repeated cocaine-
induced changes in alternative splicing in nucleus accumbens cor-
relate with changes in chromatin modifications50. We focused on 
genomic regions most closely associated with splicing, such as variant 
exons, alternative donors, alternative acceptors and their neighboring 
intronic regions, and examined numerous chromatin modifications 
at these regions. We applied this information extraction procedure 
to all known transcripts of the mouse genome and calculated the 
log2 fold changes between repeated cocaine and saline, loading the 
values into a data matrix in which each row represents a transcript 
and each column represents a histone mark–gene region combination 
(for example, a H3K4me3 peak at the proximal promoter of a given 
gene). We also used Cufflinks to determine the expression changes 
of these transcripts. k-means clustering was applied on the chroma-
tin modification matrix to identify clusters of transcripts that show 
similar patterns. These clusters were then correlated with transcripts’ 
expression changes to determine whether there is any significant over-
lap. We were able to identify 29 such clusters, or chromatin modifi-
cation signatures. Further analysis of these signatures using motif 
finding revealed several important splicing factors and transcription 
factors deduced to be important in their regulation. One of the splic-
ing factors, A2BP1 (Rbfox1 or Fox-1), was validated by showing that 
knocking out A2BP1 in adult nucleus accumbens blocks cocaine’s 
regulation of several of the genes identified in this genome-wide anal-
ysis. Moreover, A2BP1 knockout was shown to attenuate behavioral 
responses to cocaine17. These findings illustrate how the overlay of 
ChIP-seq and RNA-seq data can yield insight into the biological basis 
of a complex brain disorder.

Overlaying DNA methylation with gene expression analyses. 
Methylation of cytosine bases in DNA (5-methylcytosine or 5mC) 
has historically been viewed as an important mode of gene repres-
sion. However, many alternative forms of DNA methylation have been 
demonstrated in recent years—most importantly, 5-hydroxycytosine 
(5hmC), which is enriched in brain and associated with gene activa-
tion78. Despite the implication of DNA methylation in numerous neu-
ropsychiatric phenomena, virtually all studies so far have focused on 
individual candidate genes, with genome-wide explorations of brain 
sorely lacking.

Several methods, described in the companion review20, are used to 
obtain a genome-wide map of 5mC and 5hmC, but doing so at single 
nucleotide resolution remains a challenge owing to the sequencing 
costs involved. These methods include genome-wide bisulfite sequenc-
ing (BS-seq)—including oxidized BS-seq (oxBS-seq) to distinguish 
5mC and 5hmC; RRBS (reduced representation bisulfite sequencing), 
which focuses on CG rich regions; and meDIP-seq, which involves 
immunoprecipitation of genomic DNA fragments with an antibody 
directed against 5mC or 5hmC followed by deep sequencing. The 
human ‘methylome’ can be obtained from a chip-based method, how-
ever, available chips do not distinguish between 5mC and 5hmC.

The first step in analyzing BS-seq data is to trim off sequences rep-
resenting the adapters and low-quality 3′ ends. Trim Galore! (http://
www.bioinformatics.babraham.ac.uk/projects/trim_galore/), which 
wraps around Cutadapt and FastQC to provide extra functionality for 
RRBS libraries, can be used for this purpose; it reports the sequenc-
ing quality control by calling FastQC after trimming. Then the reads 
are aligned to the reference genome. Generally, the aligners need a 
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preprocessing step to tolerate the conversion of C to T. Two aligner 
strategies are available. One is a wild-card aligner, such as BSMAP 
(https://code.google.com/p/bsmap/)79, in which all instances of C in 
a reference genome are replaced by a wild-card letter (for example, Y), 
with both C and T possibly aligned to Y. Another approach is a three-
letter aligner, such as Bismark (http://www.bioinformatics.babraham.
ac.uk/projects/bismark/)80; here, all instances of C in reads and a 
reference genome are converted to T, whereas instances of G are con-
verted to A, equivalent to C-to-A conversions on the reverse strand, 
and the aligners process alignments in only three-letter alphabets 
(A, G and T). Wild-card aligners may reach better genomic cover-
age while potentially introducing bias to increase DNA methylation 
levels as compared with three-letter aligners81. After the alignment, 
the quantification of absolute DNA methylation can be achieved by 
counting the alignments, referred to as “methylation calling”.

The next step is to detect sites of differential methylated regions 
(DMRs) in experimental versus control conditions. Basic analyses 
such as t-tests or Wilcoxon rank tests can be applied; details about 
more advanced methods have been reviewed recently81. oxbs-
sequencing-qc (https://code.google.com/p/oxbs-sequencing-qc/) is a 
pipeline based on Bismark. It includes trimming of adapters and low-
quality portions, alignment, and methylation calling. Users need to 
implement the detection of DMRs by other analytical tools. MOABS 
(http://code.google.com/p/moabs/)82 is another pipeline, developed 
by the authors of BSMAP. It calls and accepts the alignment results 
from BSMAP or Bismark, and implements the detection of DMRs 
based on a beta-binomial hierarchical model.

As the final step of data analysis, DMR events detected by BS-seq 
or oxBS-seq are annotated by region_analysis or ChIPpeakAnno, 
and then integrated with differentially expressed genes detected by 
RNA-seq, or with ChIP-seq characterizations of other epigenomic 
endpoints, as described in the ChIP-seq section above. Approaches 
similar to ChIP-seq are used to analyze sequencing data obtained 
from meDIP-seq experiments. Reads are first evaluated for quality 
control and then aligned to a reference genome using the various 
tools outlined above, with the number of aligned reads used for meth-
ylation calling83. In addition to canonical CpG methylation, highly 
conserved non-CpG methylation (mCH, where H is either A, T or 
C) may also be important in the CNS. It was recently reported that 
non-CpG methylation accumulates in neurons, but not glia, of the 
cerebral cortex during development14.

Reconstruction of multiscale biological networks
A high priority is to optimize ways of uniting genome-wide meas-
ures of RNA expression and chromatin modifications with human 
DNA sequence and other clinical data. Several genome-wide methods 
aimed at assessing individual differences in DNA sequence—including  
genome-wide association studies (GWAS) or whole exome or 
genome sequencing—are uncovering large numbers of genetic loci  
associated with neuropsychiatric disease states such as Alzheimer’s 
disease, Parkinson’s disease, autism, and schizophrenia and bipolar 
disorder, among many others. While these studies are identifying 
common and rare sequence variations, available data only explain a 
small portion of the genetic contribution to most of these illnesses84. 
Also, gene sequence analysis alone is insufficient to uncover causal 
mechanisms regarding the gene or pathway dysregulation that gives 
rise to the disease. Increasingly available large-scale genomic, epi-
genomic and clinical data informing neuropsychiatric disorders, 
derived from humans and animal models, are now making it possible 
for the first time to more comprehensively uncover key mechanisms 
and regulators of these diseases. For example, the nearly completed 

Cancer Genome Atlas project (TCGA) aims to provide a comprehen-
sive genomic, epigenomic and pathophysiological characterization 
of over 30 different types of cancers, including glioblastoma85. The 
ongoing Genotype Tissue Expression project (GTEx) is generating a 
compendium of genotypic and gene expression data in many human 
tissues, including cerebral cortex and cerebellum86. For such large-
scale molecular data sets, several systems/network approaches have 
been developed to identify and dissect the underlying ‘interactomes’ 
for the discovery of key mechanisms and causal regulators in normal 
or pathological biological systems.

Different methods of analyzing correlated gene regulation, such 
as weighted gene coexpression network analysis (WGCNA)87, aim 
to capture total interactions among genes in a more comprehen-
sive manner than traditional unweighted approaches and have been 
used to identify coexpressed gene modules and key genes associated 
with glioblastoma88, late-onset Alzheimer’s disease (LOAD)89–91 
and autism92,93. Given the correlative nature of WGCNA, it can nei-
ther predict causal relationships nor identify causal regulators. For 
instance, to identify master regulators of LOAD, Rhinn et al. devel-
oped a differential coexpression analysis (DCA) approach to integrate 
differential expression and differential correlation to identify APOE 
ε4 effectors94. While DCA can pinpoint master regulators, DCA by 
itself does not provide a context of causal networks to further under-
stand the underlying subnetworks and pathways controlled by master 
regulators.

Recently, a more comprehensive effort was made to build mul-
tiscale gene regulatory networks from large-scale genetic, genomic 
and pathophysiological data for identification of key mechanisms and 
causal regulators in LOAD95. A key component of this multiscale net-
work analysis (MNA) approach is to integrate gene coexpression and 
causal network analyses so as to make full use of the multiscale bio-
logical data. Gene modules that comprised highly interacting genes 
through WGCNA are rank ordered on the basis of their correlations 
with clinical outcomes and enrichment for differential expression in 
LOAD when compared with normal controls. The causal relationships 
among the genes in each module are then determined by causal net-
work inference that integrates gene expression data and prior infor-
mation derived from expression-associated gene sequence variations 
such as single nucleotide polymorphisms and quantitative trait loci. 
Bayesian networks are then used to identify key causal regulators on 
the basis of network connectivity.

MNA is in line with the recent finding that no single network infer-
ence method is universally best across data sets and the best strategy is 
to integrate networks constructed from different approaches96. MNA 
is a natural framework to integrate genomic, epigenomic and clinical 
data. Gene expression, copy number variations and CpG sites can 
be put together to create comprehensive interaction networks using 
WGCNA or other approaches to fully capture interactions and coordi-
nation among gene expression, DNA methylation and DNA sequence 
variations. Regulatory relationships identified through the analysis 
of ChIP-seq data, expression-associated copy number variants and 
expression-associated DNA methylation sites can be taken as priors 
for causal network inference97. In addition, such analyses can reveal 
how DNA sequence variations across individuals help to determine 
epigenomic modifications (including DNA methylation, histone mod-
ifications and many others), both within those regions (in cis) or at 
distant interacting genomic regions (in trans). Genetic and epigenetic 
markers that are identified in conjunction with altered gene expres-
sion reflect molecular features related to phenotypic changes. Several 
approaches have been developed to formally disentangle the causal-
ity among differences in DNA sequence, epigenetic modifications  
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and gene expression across numerous 
genes98,99. With increasingly available large-
scale molecular profiling and clinical data and the rapid evolution 
of network inference approaches (Fig. 3), we expect to derive a far 
more comprehensive picture of molecular pathways and key regula-
tors underlying neuropsychiatric diseases in the next decade.

MNA can generate a large number of hypotheses (that is, models) 
concerning the underlying molecular mechanisms or biomarkers for 
complex diseases, such as neuropsychiatric disorders. Validation of 
MNA-derived models and mechanisms can only be achieved through 
perturbation (overexpression, knockdown, pharmacological manipu-
lation, etc.) of individual key causal regulators in in vitro and eventu-
ally in vivo experiments in which phenotypic changes are examined 
and compared with predicted outcomes88,94,95,97,98. Full validation 
of network-based mechanisms for complex diseases, however, is still 
prohibitive owing to high costs, intensive labor efforts and a lack 
of suitable in vitro and in vivo models for many common nervous 
system disorders. Recent progress in stem cell research has made it 
possible to model aspects of neuropsychiatric diseases using induced 
pluripotent stem cells derived from reprogrammed somatic cells. Such 
advances will likely pave the way to systematically investigate genetic 
and epigenetic endpoints associated with disease states in such in vitro 
systems, which could then be integrated with data obtained from 
human postmortem brain tissue and from animal models.

Proteomic exploration of epigenomic mechanisms
Mass spectrometry in epigenomics research. Mass spectrometry 
(MS) has become a powerful tool for the analyses of DNA methylation 
and histone modifications100, with some newer applications to small 
ncRNAs101. However, much of this has been at the global chromatin 
level and not at specific genes102. Identification and quantification 
of histone post-translational modifications (PTMs) from a variety 
of cells and tissues have been the focus of several studies. They typi-
cally involve examining the protein by bottom-up, middle-down or 
top-down MS102.

Bottom-up MS refers to digestion of the protein into small  
(<3 kDa) peptides and analysis of those peptide typically by nano-
scale liquid chromatography followed by tandem MS (MS/MS). These 
experiments are fairly high throughput and easier to perform than 
middle-down or top-down MS. The bottom-up MS approach has  
been coupled with diverse platforms and quantification schemes  
(for example, stable isotope labeling approaches)103 to compare the 
histone PTM profiles from various cellular sources and states. This 
bottom-up approach has been applied to the global analysis of core  
histone PTMs and variants from whole brain of adult C57BL/6 
mice104. This large-scale proteomics analysis identified more than 
10,000 peptides, creating a data set containing 146 modification 

sites on 1,475 peptides in various combinatorial patterns on short  
peptides. Among these histone peptides, 58 new sites of modification 
were discovered. Bottom-up MS in fact has led the way in identifying 
new marks on histones, such as crotonylation, succinylation, malo-
nylation and 2-hydroxyisobutyrylation of lysine residues105–107 and 
serine/threonine O-acetylation108.

Middle-down MS involves interrogation of polypeptides over the  
3 kDa molecular weight range. These MS experiments allow long-range  
spanning PTMs to be identified on the same peptide to determine a 
long-distance combinatorial code. They have mainly been focused 
on the N-terminal tails of the histone proteins. This approach has 
been used to determine that there are >200 combinatorially modified 
N-terminal forms of histone H3, with about half as many N-terminal 
forms of histone H4 (ref. 109). These numbers are far lower than those 
that are theoretically possible, seemingly indicating that much specifi-
city exists for creating multiply modified histone forms. Kelleher and 
co-workers used this approach to identify histone PTM patterns and 
variants from whole brain, cerebral cortex, cerebellum and hypotha-
lamus from Sprague–Dawley rats 7–8 weeks old110. Noteworthy pat-
terns of modifications were found, including a greater prevalence of 
silencing modifications such as H3K9me3 in the cerebellum.

Analysis of intact histone proteins (top-down MS) is a challenging 
task but allows the characterization of combinations of modifications 
across the entire protein sequence. Top-down MS has been used to 
identify over 700 unique histone forms across all the core histones111 
but still remains the most technically challenging MS experiment  
to perform.

Data processing for histone PTM analyses. As can be inferred from 
the above overview, the data analysis of histones is very compli-
cated owing to the many different types of modifications that can 
be detected, the distinct combinations of these PTMs that can be 
found and the low stoichiometry levels of many histone PTMs, which 
can often give rise to false positive assignments. There are many 
computational approaches for both the qualitative and quantitative 
analysis of histone proteomics data sets. The general workflow for 
proteomics data is that peptides are resolved by liquid chromatog-
raphy, typically electrosprayed ionized into the mass spectrometer 
and full MS spectra of the precursor ions collected. The precursor 
peptide ions are then selected and fragmented to obtain MS/MS 
spectra by various approaches including high energy C-trap dis-
sociation (HCD), collision-induced dissociation (CID) or electron 
transfer dissociation (ETD). Peptides and associated modifications 
are identified by searching the MS/MS spectra against an organism-
specific database.

RNA-seq

miR-seq

ChIP-seq

meDIP-seq

BS-seq

oxBS-seq

MS 

Phenotypes 

Interactions 

Associations 

Relations 

Data generation Data analysis Predictive models 
Mechanisms, 
hypotheses Validation 

Causality 

Figure 3 Network inference approaches in 
neuroscience. Systems/network approaches to 
integrating large-scale genomic, epigenomic 
and clinical data to inform investigations of 
neurological and psychiatric disorders using 
data derived from humans and animal models. 
Correlational, interaction and causal analyses 
can be unified under network-level frameworks to 
generate data-driven hypotheses (that is, models) 
concerning the underlying molecular mechanisms 
or biomarkers resulting in neuronal dysfunction. 
These models are then further validated 
experimentally, generating data that can be  
fed back into modeling processes to refine 
biological predictions.
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As histone PTM patterns are challenging, several algorithms to 
deal with these data sets have been developed in an academic set-
ting (for example, MILP or PTMap)112,113. However, several other 
database searching engines are commercially available for analyzing 
histone proteomics data, with the most common being Mascot114 and 
SEQUEST115 but with many others emerging with different specifici-
ties or advantages116–118. Searching for a large number of PTMs in 
one search drastically increases the number of candidate peptides, 
slowing computational searching speed, increasing false positive IDs 
and even identifying fewer spectra. Therefore, it has been shown with 
histone data that it is best to search for classes of modifications one 
at a time to reduce false positive misassignments. Equally important 
to these analyses for histone PTM proteomics data sets is the use of a 
site localization scoring algorithm119. As histone PTMs occur on pep-
tides with multiple acceptor amino acids (for example, several lysine 
residues within a single peptide), it is necessary to either manually 
confirm the fragment ions or use a localization scoring algorithm to 
confidently determine on which residue the modification occurs.

Combining proteomic with genomic and epigenomic analyses. Most 
histone proteomics data have been generated from global chromatin 
extractions, and hence the genomic loci involved are usually lost. The 
strength in being able to combine genomics- and epigenomics-level 
information with proteomics data is that an unbiased assessment of 
histone PTMs can be performed and mapped back to genomic loci. 
Several approaches based on tagging of proteins or using antibodies to 
isolate nucleosomes have been performed120–122 and have resulted in 
a proteomic portrait of the genomic landscape. For example, histone 
PTMs and other proteins associated with MSL (male-specific lethal)-
associated proteins in Drosophila S2 cells were recently mapped by 
quantitative proteomics122. A ChIP-seq and proteomics study also 
found that Brd (bromodomain) proteins are found on active HOX 
genes in cultured human embryonic kidney cells, with distinct patterns  
of histone H4 acetylation123. However, both of these studies mapped 
histone PTMs, not to a specific locus, but rather over a distribution 
of enriched genes. Experiments that isolate specific DNA sequences 
have still greater power to establish protein profiles and histone PTM 
patterns at a distinct gene. One of the first attempts at this was by 
Kingston and co-workers, using PiCh (proteomics of isolated chroma-
tin segments) to isolate telomeric repeats124. Other approaches such 
as chromatin affinity purification (ChAP)-MS and insertional chro-
matin immunoprecipitation (iChIP) have also been shown to be very 
useful for isolation of genomic material for MS interrogation125,126; 
however, it remains to be seen if they will be highly adopted.

Human brain evolution and the challenge of functional genomics
Cognitive abilities and neurological and psychiatric diseases appar-
ently unique to modern humans may result from genomic features 
distinguishing our brains from those of other primates. Because pro-
tein coding sequences for synaptic and other neuron-specific genes 
are extremely highly conserved within primates127, a significant por-
tion of hominid evolution could be due to DNA sequence changes 
involving regulatory and noncoding DNA128. However, exploring 
human-specific regulatory DNA is a daunting task considering that  
the chimpanzee-human genome comparison alone reveals close to  
35 × 106 single base pair and 5 × 106 multi-base-pair substitutions  
and insertion/deletion events129, with the majority of DNA in the 
human genome encoding functionally active transcripts130.

Thus, given that transcription is the first step connecting genetic 
information to phenotype, the initial studies on deep sequencing of 
human and nonhuman primate (mostly chimpanzee and macaque) 

brains are providing a treasure trove of human-specific gene expression 
signatures, with hundreds or thousands of human-specific transcripts, 
particularly in the genome’s nonrepetitive intergenic regions131, with 
16% of the estimated 8,000 adenosine-to-inosine exonic RNA editing 
sites in the cerebral and cerebellar cortex defined by human-specific 
substitution patterns132. Deep sequencing of human and nonhuman 
primate transcriptomes becomes particularly powerful in conjunction 
with comparative genome analyses. For example, a recent study dem-
onstrated that gene expression divergences in lipid catabolism path-
ways in the brain of modern humans are driven by shared ancestry 
with Neanderthals133. In contrast to the rapidly increasing number of 
RNA-seq studies in primate brains, the deep sequencing of chromatin, 
including DNA methylation and histone modification profiles, has 
barely begun. For example, the recent deep sequencing of H3K4me3 
revealed hundreds of regulatory sequences with human-specific epi-
genomic regulation in prefrontal cortical neurons12.

Future challenges
Characterizing the epigenome of the brain is a daunting task. The very 
large number of distinct types of epigenomic regulation—including 
several different types of DNA methylation and the great diversity  
and number of histone modifications and chromatin regulatory  
proteins—highlights the vast amount of ChIP-seq and related data that 
must be generated to capture the complete epigenome. Moreover, there 
is not one ‘brain epigenome’ but a distinct epigenome for each neu-
ronal and glia cell type in the brain, which likely is in the thousands.  

Box 2 Data deposition 

The sequence read archive (SRA)143 was established as an international 
effort and has become the central depository for next-generation  
sequencing data. It can be accessed at several different URLs  
depending on the user’s physical location and preference: NCBI, 
http://www.ncbi.nlm.nih.gov/Traces/sra/; EBI, http://www.ebi.ac.uk/ena/; 
DDBJ, http://trace.ddbj.nig.ac.jp/dra/index_e.html.

For functional genomics studies involving short sequence data, such 
as transcriptomics, small RNA profiling, ChIP-seq and BS-seq, users 
can upload their data through Gene Expression Omnibus (GEO) at 
http://www.ncbi.nlm.nih.gov/geo/info/seq.html. Although SRA also  
provides an online submission portal, it is often more convenient to 
submit data (especially for large studies) using GEO. Creating a GEO 
submission typically requires compiling all raw data, processed data and 
a metadata spreadsheet into a folder. These data are then transferred to 
GEO using FTP. For the metadata spreadsheet, submitters are required 
to briefly describe their study, list all samples including their properties 
and associated raw data and processed data files, describe experimental 
protocols, and elaborate on data processing steps and programs used to 
analyze their data, as well as parameter settings. After data have been 
successfully transferred, submitters can send an email to GEO to  
initiate a review of the submission. A GEO curator will examine  
uploaded files and provide feedback. A GEO accession number will then 
be created and provided to the submitter, after which the submitter 
can log in and review submissions. At this point, submissions remain 
private. However, a reviewer link can be created to share submissions 
with journal reviewers. Once manuscripts associated with submissions 
have been accepted for publication, submitters can return to their login 
page and make the data public.

The deposition of all genome-wide data into a single resource  
worldwide is essential for financial reasons: each study is so expensive 
and so many studies are needed that it is essential to avoid redundant 
efforts. Furthermore, such data sets will increasingly be of great use to 
investigators worldwide as raw data can be reanalyzed with newer,  
more powerful tools and as interpretation of a new epigenomic mark  
can be vastly improved by overlays of maps of many available marks.
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This is based on increasing evidence that patterns of DNA meth-
ylation and histone modifications at promoters and enhancers are 
highly specific for cell type and tissue4,134. A key challenge for the field 
therefore is to develop a consensus for how many such epigenomes 
must be generated to drive an improved understanding of the brain 
and its diseases.

Ultimately, this expanding knowledge of the brain’s epigenomes 
will shed unique light onto mechanisms underlying transcriptional 
regulation. Such analyses should incorporate richer RNA-seq data 
sets that provide not simply a single cross-section of RNA expression 
levels, but detailed time courses of how patterns of RNA expression 
shift dynamically over time in disease models. As well, work in animal 
models should be integrated increasingly with studies of postmortem 
human brain tissue and even with human gene sequencing data and 
phenotypic characterizations, to drive translational discoveries. The 
major bioinformatics challenge is thus to optimize the tools to overlay 
these different and each vast data sets to derive maximal insight into 
transcriptional control in health and disease. A crucial step is to ensure 
that all genome-wide data are placed in the public domain in ways that 
allow raw data sets to be reanalyzed as advances proceed (Box 2).

The particular complexity of the genetic risk for most common 
brain disorders adds yet another challenge. For example, a recent 
GWAS of the Psychiatric Genomics Consortium, involving approxi-
mately 40,000 subjects, estimated that 8,300 independent single 

nucleotide polymorphisms, positioned mostly in intergenic and  
(protein)-noncoding sequences, contribute to the genetic risk of schiz-
ophrenia135. Strikingly, however, there is no significant enrichment for 
DNase I hypersensitive sites (which broadly define open chromatin, 
primarily at sites of active promoters, enhancers and expressed genes) 
identified by the ENCODE project130. This contrasts with the robust 
enrichment for DNase I hypersensitive sites of the general GWAS 
catalog of the National Genome Research Institute136. Because the 
ENCODE database is exclusively built on epigenomic mappings from 
peripheral cell lines and tissues, it is clear that similar efforts, focused 
on brain and some of its surrogates, such as pluripotent stem cell–
derived neural cultures137 or cerebral organoids138, are now needed 
to obtain a deeper understanding of the genetic risk architectures of 
these complex disorders. Furthermore, extending these analyses to 
disease-linked alterations in chromatin structure over large genomic 
regions in brain (Box 3) promises to provide great insights into the 
molecular causes of these heterogeneous syndromes.

To this end, the US National Institutes of Health–based initiatives 
that include epigenomic mappings of human brain, including the 
Epigenomics Roadmap or, more recently, PsychENCODE, will pro-
vide critical starting points for what should be the ultimate goal of 
modern neuroepigenomics: whole-genome, high-resolution (single 
base pair) maps for a large number of epigenomic marks for key ana-
tomically defined brain regions and their important subpopulations 
of neurons and glia. This type of resource is likely to be needed to 
expedite the dramatic, game-changing discoveries from integrated 
studies of animal models and human patients. Such transformational 
advances are sorely needed to finally overcome the limited success in 
diagnostics and drug discovery efforts over the past several decades 
and to develop truly improved diagnostic tests and treatments for a 
host of severe neurological and psychiatric disorders.
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